DPP-4 (Geometrical Optics)

Video Solution on Website:-

Video Solution on YouTube:- https://youtu.be/0dKA5eQKm_Y

Written Solution on Website :- https://physicsaholics.com/note/notesDetalis/68

Q 1. The refractive index of air with respect to glass is $2 / 3$. The refractive index of diamond with respect to air is $12 / 5$. Then the refractive index of glass with respect to diamond will be
(a) $5 / 8$
(b) $8 / 9$
(c) $5 / 18$
(d) $18 / 5$

Q 2. A man is standing at the edge of a 1 m deep swimming pool, completely filled with a liquid of refractive index. $\sqrt{3 / 2}$. The eyes of the man are $\sqrt{3} \mathrm{~m}$ above the ground. A coin located at the bottom of the pool appears to be at an angle of depression of 30° with reference to the eye of man. Then horizontal distance (represented by x in the figure) of the coin from the eye of the man is \qquad mm.

Q 3. For the figure shown match the following:

(a)

$$
\mu_{1} / \mu_{3}
$$

(p) $\sqrt{2}$
(b)
μ_{2} / μ_{1}
(q)
$\sqrt{1.5}$
(c) μ_{2} / μ_{3}
(r) $\sqrt{3}$

hysicsaholics

Q 4. A light of wavelength $6000 \AA$ in air enters a medium of refractive index 1.5. Inside the medium, its frequency is v and its wavelength is λ.
(a) $v=5 \times 10^{14} \mathrm{~Hz}$
(b) $v=7.5 \times 10^{14} \mathrm{~Hz}$
(c) $\lambda=4000 \AA$
(d) $\lambda=9000 \AA$

Q 5. A ray of light is incident at the glass-water interface at an angle i, it emerges finally parallel to the surface of water, then the value of μ_{g} would be:

(a) $(4 / 3) \sin \mathrm{i}$
(b) $1 / \sin \mathrm{i}$
(c) $4 / 3$
(d) i

Q 6. A ray of light passes through four transparent media with refractive indices $\mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4} as shown in the figure. The surfaces of all media are parallel. If the emergent ray $C D$ is parallel to the incident ray $A B$, we must have.

Q 7. The x -z plane separates two media A and B of refractive indices $\mu_{1}=1.5$ and $\mu_{2}=$ 2. A ray of light travels from A to B. Its directions in the two media are given by unit vectors $\vec{a}_{1}=a \hat{\imath}+b \hat{\jmath}$ and $u_{2}=c \hat{\imath}+d \hat{\jmath}$. Then:
(a) $\frac{a}{c}=\frac{4}{3}$
(b) $\frac{a}{c}=\frac{3}{4}$
(c) $\frac{b}{d}=\frac{4}{3}$
(d) $\frac{b}{d}=\frac{3}{4}$

Q 8. A ray of light falls on a transparent sphere with center at C as shown in figure. The ray emerges from the sphere parallel to line AB . The refractive index of the sphere is

(a) $\sqrt{2}$
(b) $\sqrt{3}$
(c) $\frac{3}{2}$
(d) $\frac{1}{2}$

Q 9. One side of a glass slab is silvered as shown. Any of light is incident on the other side at angle of incidence $\mathrm{i}=45^{\circ}$. Refractive Index of glass is given as 1.5. The deviation of the ray of light from its initial path when it comes out of the slab is:

(a) 90°
(b) 180°
(c) 120°
(d) 45°

Q 10. A ray incident at an angle of incidence 60° enters a glass sphere of refractive index μ $=\sqrt{3}$ This ray is reflected and refracted at the farther surface of the sphere. The angle between reflected and refracted rays at this surface is:
(a) 90°
(b) 60°
(c) 70°
(d) 40°

Q 11. A ray is incident at an angle 60° on a sphere which is made of material having refractive index $\sqrt{3}$ find angle by which final ray is deviated

(b) 15°
(c) 45°
(d) 60°

Answer Key

Q. 1 a	Q. 24000	Q. 3 a(q), b(p), c(r)	Q. 4 a, c	Q. 5 b
Q. 6 d	Q. 7 a	Q. 8 b	Q. 9 a	Q. 10 a
Q. 11 d				

